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When a material is subjected to an alternating stress "eld there are temperature
#uctuations throughout its volume due to thermoelastic e!ect. The resulting irreversible
heat conduction leads to entropy production, which in turn is the cause for thermodynamic
damping. An analytical investigation of the entropy produced during a vibration cycle due
to the reciprocity of temperature rise and strain yielded the change of the material damping
factor as a function of shape and magnitude of existing crack in the structure. A
homogeneous, isotropic, elastic bar of orthogonal shape is considered with a single-edge
crack under alternating uniform axial stress. The analytical determination of the dynamic
characteristics of the cracked structure yielded the damping factor of the bar, the material
damping factor and a good correlation of depth of crack with the damping factor.
Experimental results on cracked bars are in good correlation with the analysis.
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1. INTRODUCTION

It is well known that the existence of a crack in a structure is related to the decrease in its
strength. The evaluation of the e!ect of cracks on the strength of the material, especially
in relation with fatigue and brittle fracture is a very important consideration in engineering
design. Numerous researchers have investigated crack identi"cation extensively. A
thorough state of the art review can be found in reference [1].

Barenblatt et al. [2], while dealing with the in#uence of the vibrational heating on the
fracture propagation in polymeric materials, considered that the failure process for rigid
cracked materials is localized at the crack tips, where stress concentration takes place.
Therefore, the intensity of heat generation, which is proportional to the square of the stress
amplitude is low, far from the crack tips, but might be considerable and involve
a substantial temperature rise near the crack tips. Thus, due to the vibrational stress,
a non-uniform temperature distribution in the sample arises, activating the failure
process (rupture of bonds) just in the places where it is localized. In the remaining part of the
sample the temperature rise is usually negligible. These considerations gave a complete
quantitative theory for the local heating e!ect on the rate of the crack propagation.
Speci"cally, they gave analytical expressions for the stress and temperature "elds in the
cracked structure.
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Damping is also a very important material and structural property when dealing with
vibrating structures from the point of view of vibration attenuation in cracked structures.
For a material, there are many damping mechanisms [3], most of which contribute
signi"cantly to the total damping only over a certain narrow range of frequency,
temperature or stress. Among them, thermodynamic damping is due to the non-reversible
heat conduction in the material.

Zener "rst studied thermodynamic damping for transverse vibrations of homogeneous
Euler}Bernoulli beam [4]. The case of general homogeneous medium was investigated by
Biot [5], Lucke [6], Deresiewicz [7], Alblas [8, 9], and Gillis [10], while the case of
homogeneous plates, shells and Timoshenko beams were investigated by Tasi [11], Tasi
and Herrmann [12], Shieh [13}15] and Lee [16]. The connection between the second law
of thermodynamics and thermodynamic damping was also discussed by Goodman et al.
[17], and Landau and Lifshitz [18]. Armstrong [19] calculated thermodynamic damping of
one-dimensional composite consisting of successive slabs assuming identical thermal
conductivity and speci"c heat for all slabs. Kinra and Milligan [20] presented a general
methodology for calculating thermodynamic damping in homogeneous or composite
materials. Milligan and Kinra [21] extended the calculation to a single linear inclusion
in an unbounded matrix. The case of an Euler}Bernoulli beam was examined by Bishop
and Kinra [22]. Bishop and Kinra [23] investigated the thermodynamic damping of
a laminated beam in #exure and extension. Bishop and Kinra [24] calculated the
thermodynamic damping of an N-layer metal matrix composite in a Cartesian, cylindrical
and spherical coordinate system with perfect or imperfect thermal interfaces. Milligan and
Kinra [25] calculated the thermodynamic damping of a "bber reinforced metal}matrix
composite.

In this paper, the thermodynamic damping of a homogeneous, isotropic, elastic bar with
a single-edge surface crack under alternating uniform axial stress is calculated analytically
and experimentally and the associated damping factor is related to the depth of the crack.

2. ANALYTICAL MODEL

The thermomechanical behaviour of a linear, isotropic and homogeneous thermoelastic
medium is described by the following equations: the "rst law of thermodynamics [26]
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the Fourier law of heat conduction [29],
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Here p
ij

is the stress tensor, e
ij

is the strain tensor, u
i
is the displacement vector, l is the

Poisson ratio, E is Young's modulus, o is the density, s is the entropy produced per unit
mass, ¹ is the absolute temperature,¹

0
is the thermodynamic equilibrium temperature, q

i
is

the heat #ux vector, u is the internal energy per unit mass, d
ij

is the Kronecker delta, k is the
thermal conductivity, a

l
is the coe$cient of thermal expansion and the indices i, j, k each

have a value of 1, 2 and 3.
From the above equations the relation between temperature and strain is [27]
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In this equation, the term (¹Le
kk

/Lt) couples the temperature "eld with the mechanical
"eld and leads to a nonlinear problem. One can replace ¹ on the right-hand side of
equation (7) with the thermodynamic equilibrium temperature ¹

0
, because the #uctuations

in temperature caused by reasonable alternating stress levels are very small. This
assumption linearizes the di!erential equation. Equation (7) shows that for an isotropic
material [30],
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where C is the speci"c heat per unit volume. Since the temperature and mechanical "elds are
coupled, inhomogeneities in stress and material properties result in inhomogeneities in
temperature. Heat is conducted from the high-temperature regions to the low-temperature
regions and, as a consequence of the second law of thermodynamics, entropy is produced
which is manifested as a conversion of useful mechanical energy into heat.

When the second law of thermodynamics is applied to heat conduction in solids, it results
in the calculation of the #ow of entropy produced per unit volume sR

p
"ds

p
/dt due to

irreversible heat conduction [31, 32] as
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The entropy Ds produced per unit volume and cycle of vibration is

Ds"Q ¹
p
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p
dt, (11)

where ¹
p

is the period of vibration.
From the Gouy}Stodola theorem [34}36] the mechanical energy=Q dissipated per unit

of volume and per unit of time is
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The mechanical energy D= dissipated per cycle of vibration in a medium of volume < is
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Equation (13) relates the entropy produced in the material during one cycle of vibration
to the elastic energy dissipated.

Finally, the material damping factor c is de"ned as the energy dissipated throughout the
medium in one cycle, normalized with respect to the maximum elastic energy stored during
that cycle [37]:

c"D=/4n P
V

=
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The modal damping factor f is de"ned [37] as

f"J(c2/(4#f2). (15)

From equation (3.63) on p. 154 of reference [37]
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Then raising to the second power on both sides of equation (15) one obtains

f2"(c2/(4#f2)Nf2#f4"c2. (15c)

From equations (15b) and (15c) f4"0, which is true, given that f is very small. Hence,
equation (15) is valid.

Equations (1)}(15) show the relationship between the stress "eld and the material or the
modal damping factor of the bar due to the thermoelastic e!ect.

3. CRACK IDENTIFICATION FROM THE INFLUENCE OF VIBRATIONAL HEATING

To improve our understanding of the mechanism of energy conversion and the relation of
the cyclic stresses to the vibration damping, analytical and experimental work in cracked
structures has been carried out.

Consider a homogeneous, isotropic, elastic bar with a single-edge surface crack under
alternating uniform axial load P, as shown in Figure 1. According to the basic concept of
Zhurkov [38, 39], the fracture of solids is a process which takes place in time under any
stress, is controlled by certain kinetics due to thermal #uctuations and is strongly a!ected
by temperature and stress.

Barenblatt et al. [2], considering the local heating e!ect on the rate of the crack
propagation, gave analytical expressions for the stress and temperature "elds in a cracked
structure. They supposed that the period of vibrations is su$ciently small in comparison
with the characteristic time of the temperature change. In this case, the heat transfer
equations are solved and averaged over a time interval su$ciently large as compared with
the time of substantial change of temperature. The failure process takes place mainly in
a region near the crack edge with linear dimensions of the order of d (see Figure 1), which is



Figure 1. Elastic bar with a single-edge surface crack under alternating uniform axial load P.
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assumed small in comparison with the characteristic length (crack length a). Then,
according to reference [2], the stresses at any point are
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while the temperature distribution close to the crack tip is
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In the above equations Na
0

is the amplitude of the stress intensity factor, r is the distance
of the considered point from the crack tip, h is the polar angle, l is the Poisson ratio, ¹(r, h)
is the temperature at any point (r, h), ¹

0
is the ambient temperature, u is the frequency of

vibration, IA is the loss compliance, k is the thermal conductivity, K
0

is the modi"ed Bessel
function, g"(i2#a2)1@2, i"u/2a

diff
, u is the velocity with which the crack tip moves

along the x-axis, a
diff

"k/oc the thermal di!usivity, o the density, c the speci"c heat,
a"(h/k)1@2 and h is the convection heat transfer coe$cient. According to equation (17), the
temperature at any point (r, h), is derived from the integral of the impact of the temperature
of every other point on the speci"c point. The local geometry is presented in Figure 2, where
f, h@ and hA are shown. Also from reference [2]

W(h)"11/8#2l2#(11/8#2l2) cos h!3/8 cos2 h!7/8 cos3 h#1/2 cos5 h. (18)

At this point, the stress and temperature "elds can be computed from equations (16}18).
The mechanical energy D= dissipated in the solid per cycle of vibration is derived from
equations (9), (11) and (13) with temperatures calculated from equations (17) and (18) by



Figure 2. Local crack geometry.
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a "nite di!erence method at a lattice of points (i, j), where the integration is replaced with
summation by using the trapezoidal rule
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where ¹p"2n/u is the period of vibration, Z is the bar width and s is the linear dimension
of the rectangular region near the crack edge, where the heat generation process and #ow
mainly take place. Dx, Dy are the mesh spacings in the x- and y-axis respectively.

The total elastic energy=
elastic

of elastic deformation per cycle of vibration in the volume
< of the solid is, as calculated from equation (10),

=
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while the damping factor c and the modal damping factor f are calculated from equations
(14) and (15) respectively.

A numerical application was performed for the following bar and crack geometry,
technical characteristics and material properties, for bars made out of Plexiglas: length of
the bar 1"0)236 m, cross-section height 2b"0)022 m, cross-section width Z"0)009 m,
velocity of crack propagation u"0 m/s, ambient temperature ¹

0
"253C, frequency of

vibration u"4)2 kHz, Young's modulus E"3)1026]109 N/m2 [40], Poisson's ratio
l"0)35 [40], density o"1190 kg/m3 [40], coe$cient of thermal expansion a

1
"

0)0000738 m/m 3C [40], thermal conductivity k"0)18749 W/m 3C [40], speci"c heat
C"1465)38 J/kg 3K [40], loss compliance, IA"3e-9 m2/N [41], heat transfer coe$cient
h"21)297593 W/m2 3C [42]. The amplitude of stress intensity factor has been calculated
for di!erent a/b ratios from reference [43].

The linear dimension s of the region near the crack tip, where the heating is important,
leads to a mesh spacing Dx, Dy used during the application of "nite di!erences in order to
"nd temperatures and stresses. At this point, Barrenblatt et al. [2] who introduced this
concept, did not de"ne the heating region dimension s (see Figure 1) other than by the
inequality

d@s@l. (21)



Figure 3. Correlation for linear dimension s with a/b.
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We treated here the region measure s as a parameter to be experimentally identi"ed. If it
is determined for a crack of a speci"c geometry, it can be used for any crack location and
boundary conditions of the crack signature, due to inequality (21). An empirical function
was derived to relate s with a/b changes. This function was determined experimentally to be,
for the particular crack geometry,

s"0)0006(a/b)~1>0692 (22)

This function was found from the demand that there should be an agreement between the
analytical and experimental results for the cracked beam damping. The variation of the grid
spacing is expressed in Figure 3, where the linear dimension s is plotted against the crack
length ratio a/b, with correlation coe$cient R2"0)9789. The correlation measures the
relationship between the two data sets that are scaled to be independent of the unit of
measurement. The population correlation calculation gives the covariance of the two data
sets divided by the product of their standard deviations. Correlation can be used to
determine whether two data sets move together; that is whether large values of one set are
associated with large values of the other (positive correlation), whether small values of one
set are associated with large values of the other (negative correlation), or whether values in
both sets are unrelated (correlation near zero). The mesh spacings Dx and Dy, occurring
from the linear dimension s, which is as de"ned in equation (22), are applied further for the
calculation of the temperature "eld and the dissipated energy.

The analytically calculated damping factor is plotted against the crack-length ratio a/b, in
Figure 4, in comparison with the experimental results obtained. It is apparent that the
damping increases with increasing crack length as expected.

4. EXPERIMENTAL EVIDENCE

On the basis of the results shown in Figure 4, it is apparent that the damping change due
to the existence of the crack will be substantial. To test this hypothesis, changes in modal
damping were evaluated experimentally. Prismatic bars made of Plexiglas [40] of
rectangular cross-section 9]22 mm and length 236 mm were prepared. At mid-span,
a sharp notch was introduced, perpendicular to the longitudinal axis and the longer
dimension of the cross-section. Then, the bar was placed on a heating device and the side



Figure 4. Material damping factor versus crack-length ratio a/b. Analytical and experimental results. (r),
Df-anal; (j), Df-exp; (0), Df-exp; ())))))), Df-anal.

Figure 5. Experimental set-up.
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opposite to the notch was heated, so that the heating was propagating towards the notch
and reached a prede"ned point on the cross-section. Then, the specimen was removed from
the heater and was hit at one end, the other being "xed, so that a crack, starting from the
notch, propagated up to the heated part of the cross-section. Di!erent specimens with
varying crack lengths were obtained with this procedure.

The experimental set-up is shown in Figure 5. Each bar was supported at the two ends by
thin strings to assure free longitudinal motion. An axial accelerometer of 1 g mass was "xed
on the right end of the bar to measure the longitudinal frequencies in the y-direction. The
bar was set into free longitudinal vibration from the initial position by hitting it with
a miniature hammer at the left end in the y-direction. As is shown in Figure 5, y is the
longitudinal axis of the bar considered. Although coupling of #exural and longitudinal
vibration may appear, the identi"cation of longitudinal frequencies is facilitated by the fact
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that #exural and longitudinal vibration frequencies are well separated. The lowest #exural
vibrations in both x and z directions are below 1 kHz, while the longitudinal frequency is
around 4 kHz. The response was measured directly at the same position, through the
accelerometer. The output of the latter after ampli"cation was introduced through a Data
Acquisition Card (Omega OMB-DAQBOOK-100/-120/-200) to a PC and stored for further
analysis. The vibration frequency was calculated by measuring the time elapsed for 50 cycles
of vibration. Moreover, an FFT transform was performed at the stored signal for an
independent measurement of the longitudinal natural frequencies. The lowest natural
frequency of the uncracked bars was around 4)2 kHz. The 100 kHz sampling rate
two-channel A/D converter used could give good accuracy for the fundamental frequency
measurements.

Measurements were taken for crack depths up to 90% of the cross-section half height b,
which is of importance for engineering applications. Also, the experimental points are
averages from the tests, though the spread of frequency measurements about the points was
very small.

The vibration modal damping factor f (MDF) was obtained by applying the logarithmic
decrement method [37]. Ten independent measurements of the damping factor have been
performed on each bar to yield, from their average, the damping measurement of the
cracked structure for every crack length ratio a/b. This damping value accounts for the
crack only and is compared with the analytical results in Figure 4.

5. CONCLUSIONS

The thermodynamic theory of damping was used to "nd the material damping due to the
crack, which results in an additional damping mechanism due to the non-reversible #ow of
heat from areas of higher heat generation to others of lower heat generation. This was
further related to the crack depth.

Our analysis and experiments are limited to elastic strains and frequencies, leading to the
production of change in the damping factor which depends on the crack length and thus
becomes a material and a system property. Solution for the bar with a single edge was
employed.

The damping factor increases with increasing crack-length ratio a/b, as shown in
Figure 4. The change from the uncracked bar to the one cracked to half its thickness
(a/b"1) is about 4% which is measurable, since the standard deviation in our damping
measurements was about 1%. Moreover, it is known that thermodynamic damping is very
low, as compared with other damping mechanisms [44, 45]. However, the measurement of
its change with the depth of the crack apparently correlates well with the crack depth.

This analysis can be used in a number of engineering problems.

1. As a continuous quality control tool for the production of ceramics, glass and similar
materials that their quality is diminished, with, even, initiating cracks.

2. As a design tool for crack identi"cation in structures.
3. In the biomedical "eld, as part of a diagnostic and monitoring tool for cracked bones and

other conditions of bone loss.

The proposed crack identi"cation method is as sensitive as the spectral method
(measurement of the change in natural frequency), but has the advantage that, unlike the
spectral method, it is relatively insensitive to the change or uncertainty in the boundary
conditions. Besides, for any known material it does not require an initial base-line
measurement of damping on the cracked structure.
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